Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glia ; 69(12): 2828-2844, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34378239

RESUMO

Mobilization of astrocyte glycogen is key for processes such as synaptic plasticity and memory formation but the link between neuronal activity and glycogen breakdown is not fully known. Activation of cytosolic soluble adenylyl cyclase (sAC) in astrocytes has been suggested to link neuronal depolarization and glycogen breakdown partly based on experiments employing pharmacological inhibition of sAC. However, several studies have revealed that sAC located within mitochondria is a central regulator of respiration and oxidative phosphorylation. Thus, pharmacological sAC inhibition is likely to affect both cytosolic and mitochondrial sAC and if bioenergetic readouts are studied, the observed effects are likely to stem from inhibition of mitochondrial rather than cytosolic sAC. Here, we report that a pharmacologically induced inhibition of sAC activity lowers mitochondrial respiration, induces phosphorylation of the metabolic master switch AMP-activated protein kinase (AMPK), and decreases glycogen stores in cultured primary murine astrocytes. From these data and our discussion of the literature, mitochondrial sAC emerges as a key regulator of astrocyte bioenergetics. Lastly, we discuss the challenges of investigating the functional and metabolic roles of cytosolic versus mitochondrial sAC in astrocytes employing the currently available pharmacological tool compounds.


Assuntos
Proteínas Quinases Ativadas por AMP , Inibidores de Adenilil Ciclases , Adenilil Ciclases , Astrócitos , Glicogênio , Proteínas Quinases Ativadas por AMP/metabolismo , Inibidores de Adenilil Ciclases/farmacologia , Adenilil Ciclases/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/enzimologia , Ativação Enzimática/efeitos dos fármacos , Glicogênio/metabolismo , Camundongos , Mitocôndrias/enzimologia , Fosforilação Oxidativa
2.
Glia ; 68(9): 1824-1839, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32092215

RESUMO

AMP-activated protein kinase (AMPK) is an important energy sensor located in cells throughout the human body. From the periphery, AMPK is known to be a metabolic master switch controlling the use of energy fuels. The energy sensor is activated when the energy status of the cell is low, initiating energy-producing pathways and deactivating energy-consuming pathways. All brain cells are crucially dependent on energy production for survival, and the availability of energy substrates must be closely regulated. Intriguingly, the role of AMPK in the regulation of brain cell metabolism has been sparsely investigated, particularly in astrocytes. By investigating metabolism of 13 C-labeled energy substrates in acutely isolated hippocampal slices and cultured astrocytes, with subsequent mass spectrometry analysis, we here show that activation of AMPK increases glycolysis as well as the capacity of the TCA cycle, that is, anaplerosis, through the activity of pyruvate carboxylase (PC) in astrocytes. In addition, we demonstrate that AMPK activation leads to augmented astrocytic glutamate oxidation via pyruvate recycling (i.e., cataplerosis). This regulatory mechanism induced by AMPK activation is mediated via glutamate dehydrogenase (GDH) shown in a CNS-specific GDH knockout mouse. Collectively, these findings demonstrate that AMPK regulates TCA cycle dynamics in astrocytes via PC and GDH activity. AMPK functionality has been shown to be hampered in Alzheimer's and Parkinson's disease and our findings may therefore add to the toolbox for discovery of new metabolic drug targets.


Assuntos
Proteínas Quinases Ativadas por AMP , Astrócitos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Astrócitos/metabolismo , Respiração Celular , Ciclo do Ácido Cítrico , Glutamato Desidrogenase , Camundongos , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...